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ABSTRACT
Network function virtualization (NFV) can significantly re-
duce the operation cost and speed up the deployment for
network services to markets. Under NFV, a network service
is composed by a chain of ordered virtual functions, or we
call a “network function chain.” A fundamental question is
when given a number of network function chains, on which
servers should we place these functions and how should we
form a chain on these functions? This is challenging due to
the intricate dependency relationship of functions and the in-
trinsic complex nature of the optimization. In this paper, we
formulate the function placement and chaining problem as
an integer optimization, where each variable is an indicator
whether one service chain can be deployed on a configura-
tion (or a possible function placement of a service chain).
While this problem is generally NP-hard, our contribution
is to show that it can be mapped to an exponential number
of min-cost flow problems. Instead of solving all the min-
cost problems, one can select a small number of mapped
min-cost problems, which are likely to have a low cost. To
achieve this, we relax the integer problem into a fractional
linear problem, and theoretically prove that the fractional
solutions possess some desirable properties, i.e., the number
and the utilization of selected configurations can be upper
and lower bounded, respectively. Based on such properties,
we determine some “good” configurations selected from the
fractional solution and determine the mapped min-cost flow
problem, and this helps us to develop efficient algorithm-
s for network function placement and chaining. Via exten-
sive simulations, we show that our algorithms significantly
outperform state-of-art algorithms and achieve near-optimal
performance.

1 INTRODUCTION
Network function virtualization (NFV) is a promising trend
to carry out network services. Different from traditional ap-
proaches, NFV uses general-purpose servers and functions
are deployed as software components. Virtual functions can
be quickly instantiated or deallocated from servers, thereby
dramatically reducing the deployment time to the market
[1]. NFV is based on virtual network functions (vNFs). Each
virtual network function is a software component which per-
forms a specific task (or function), e.g., a firewall or a packet
inspection unit [2–4]. To provide a network service, several
vNFs need to be chained and executed in order, which is
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called a “service chain”. For example, some data flows may
need to first go through a firewall function, then a packet
inspection function, and finally a packet processing function.
Based on a number of general functions deployed on servers,
an incoming service request can be executed by choosing the
necessary functions and chaining them together in a flexi-
ble and on-demand manner. Some key design questions are,
which servers should we place these functions (i.e., function
placement), and how we can “group” them to process net-
work request (i.e., function chain formation) in a low-cost
and high-efficiency manner?

The above two design questions are non-trivial due to the
complex nature of the design space and objectives. In gen-
eral, a set of connected servers are responsible to host the
virtual network functions. Each server has a capacity con-
straint, i.e., it can only host a limited number of functions.
Each pair of servers (i, j) may (or may not) be connected,
i.e., the output of a function deployed in server i can (or
cannot) be used as the input to a function in server j. In
other words, a service chain formation has to satisfy the con-
nectivity constraint: It needs to choose functions deployed
on a sequence of connected pair of servers. The connectivity
depends on the physical interconnection of servers, and the
dynamic availability of link bandwidth. Furthermore, given
a pair of connected servers, there is a link cost between them,
which may represent the bandwidth cost or transmission de-
lay. The objectives of a NFV placement and chaining prob-
lem may include: (1) to serve as many incoming requests as
possible; (2) to reduce the operating cost (e.g., bandwidth
cost), and (3) to improve the service quality (e.g., reducing
task processing time), subject to the capacity and connectiv-
ity constraints. Such a problem is complicated because (1)
there are multiple (and possibly conflicting) objectives, (2)
a decision on the function placement and chaining is an inte-
ger programming problem, which has a high computational
complexity in general, and (3) the constraints are complicat-
ed and dynamic, subject to the stochastic nature of request
arrivals and departures.

There have been considerable efforts to address the afore-
mentioned design issues. State-of-the-art approaches can be
classified into two categories. The first one is using heuristic
schemes [5–8]. For example, one heuristic approach is to con-
sider NFV placement requests in an arbitrary sequence, and
greedily form a service chain with the lowest possible cost
in each assignment. These heuristics are often simple, but
the performance is not guaranteed and more importantly,
the underlying reason for such heuristics is unclear. The sec-
ond approach is to formulate an integer optimization for the



function placement and chaining problem, relax it to a linear
programming, and perform random rounding on the fraction-
al solution to obtain an integer solution [9, 10], so that the
function placement and chaining can be done according to
this integer solution. Such approaches are often believed to
be closer to the optimality of a pre-defined objective, yet, a
random rounding can easily violate some constraints (e.g.,
the capacity of a server, please refer to section 5.1). The vio-
lation can be severe when the size of the problem scales up,
and thus, they have a fundamental scalability issue.

In this paper, we formulate an integer optimization for the
function placement and chaining problem. We first show its
high complexity and map it to min-cost flow problems. To
reduce the complexity, we relax it into a linear programming
problem, from which we obtain fractional solutions. Different
from existing approaches which process the fractional solu-
tion in a straightforward rounding manner, we analyze the
features of such fractional solutions, i.e., the number and the
utilization of selected configurations (function placements for
all service chains) can be upper bounded and lower bound-
ed, respectively. One important property of these bounds
is that they are only dependent on the parameters of ser-
vice requests, but independent of the network size. Based
on these bounds, we design time-efficient, near-optimal and
scalable algorithms by taking the advantage of some “good”
fractional configurations that are selected by the criterion
we propose. To summarize, our contributions are:

• We set up a formal mathematical model to capture
the function placement and chaining problem for
network function virtualization, and show it can be
mapped to min-cost flow problems.

• We relax the integer optimization into a linear pro-
gramm and reveal some attractive properties of its
fractional solution, i.e., the number and the utiliza-
tion of selected configurations can be upper bounded
and lower bounded, respectively.

• Based on such properties, we propose efficient algo-
rithms by selecting a small number of min-cost flow
problems to determine network function placement
and chaining, which are shown to achieve superior
performance over existing approaches via extensive
simulations.

This is the organization of the paper. In Section II, we
provide a model for NFV function placement and chaining.
In Section III, we map the problem to an exponential number
of min-cost problems. In Section IV, we relax the integer
optimization into a linear programming problem, analyze the
properties of its fractional solutions, and propose an efficient
algorithm for function placement and chaining. In Section V,
we evaluate the performance of our proposed algorithms via
extensive simulations. We conclude our work in Section VI.

2 NETWORK MODEL
In this section, we present the network model of placing a
number of service chains on a physical network, and our

objective is to minimize the total cost, including link cost
and server cost.
Server model. We consider a connected graph G = (V,E),
where V is the set of servers, and E is the set of links. For
each server i ∈ V , its capacity is an integer ci, which indi-
cates that server i can host at most ci functions. The cost to
implement a function on server i is denoted as wi. The num-
ber of servers is |V | = N . For each link e ∈ E, its capacity is
an integer ce. When there are two functions communicating
through link e, they will consume one unit of link capacity
and there is a cost we for using the unit link capacity. Phys-
ically, the link cost can represent bandwidth cost or data
transmission delay between these two servers.
Service requests. When service requests arrive, the net-
work will determine the types of service chains to serve the
service. A service chain may need to be implemented with
multiple instances depending on the traffic requesting the
service. In general, we assume that a total of K service
chains needed to be deployed. Under the NFV paradigm,
each service chain is composed of a number of ordered vir-
tual network functions. Let us assume we need Lk functions
for the k-th service chain, and that L1 ≤ L2 ≤ ... ≤ LK = L.
Note that a function can only be used by one service. If t-
wo services need the same function, we need two instances
of this function. The number of functions in a service chain
is usually not very large, and we assume LK is a constant
independent of the number of service chains or servers.
Service chain forming. For service chain k, there are Lk

functions. Since each function can be placed in any of the
N servers, there are at most NLk configurations for service
chain k, where each configuration is one possible placement
and chaining scheme for a service chain. For configuration
Ck,pk (1 ≤ pk ≤ NLk ), functions are connected by Lk servers
and Lk − 1 links1, and the cost of this configuration Wk,pk

is the total cost to implement these Lk functions and use
Lk − 1 links, i.e., Wk,pk =

∑
i∈Ck,pk

wi +
∑

e∈Ck,pk
we. Note

that when the capacity of one server is larger than two, it
is possible that two or more functions of a service chain can
be placed on this server.
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Figure 1: An example of network model. ci (c(i,j))
is the capacity of server i (link (i, j)), wi (w(i,j)) is
the cost for unit capacity at server i (link (i, j)), and
assume w(i,i) = 0. There are three service chains to
be deployed, each with Lk (k = 1, 2, 3) functions.

1Each link here is a physical link, which assumes that nearby functions
on a same chain should be placed on two physically connected nodes.
We note that this assumption can be readily extended to more general
scenarios, e.g., a link represents a shortest path between two nodes.



One example of the network model is presented in Figure
1, where each Si is a function in a service chain. One possible
configuration for the third service chain is C3,p3 = {3, 1, 4},
where functions S3, S4 and S2 are placed on servers 3, 1,
4, respectively. The cost for this configuration is W3,p3 =
w3 + w1 + w4 + w(3,1) + w(1,4) = 170.5. The question is can
we deploy all the three service chains in these servers with
the minimum cost? Now let us formulate the problem and
present the objective function formally, i.e., to place func-
tions of all services in the physical network, and form chains
for them with the minimum total cost2. Define zk,pk = 1
if service k chooses configuration Ck,pk , and zk,pk = 0 oth-
erwise. To reduce its total cost, we formulate the following
integer optimization problem:

Problem A: min
z

K∑

k=1

NLk∑

pk=1

Wk,pk · zk,pk , (1)

with constraints,

NLk∑

pk=1

zk,pk = 1 (1 ≤ k ≤ K), (2)

K∑

k=1

NLk∑

pk=1

f(i, pk) · zk,pk ≤ ci (1 ≤ i ≤ N), (3)

K∑

k=1

NLk∑

pk=1

f(e, pk) · zk,pk ≤ ce (e ∈ E), (4)

zk,pk ∈ {0, 1}, (5)

where f(i, pk) is the number of functions placed in server i for
configuration Ck,pk and f(e, pk) is the number of times that
configuration Ck,pk will traverse through link e. Constraint
(2) ensures that every service chain is satisfied; (3) ensures
the feasibility of the server capacity, (4) ensures the feasi-
bility of the link capacity and (5) is the integer constraint.
Note that the capacity information in (3) and (4) represents
the current network status. Thus, when the servers are al-
ready running some network services, by quickly solving the
optimization, we can decide the placement and chaining for
these newly arrived network requests without affecting the
ones in execution.

3 ANALYSIS ON THE INTEGER
PROBLEM

In this section, we conduct analysis on the integer problem
A. In general, the problem is NP-hard, as shown in existing
works [8–10]. Here, we want to further point out that, when
link constraint (4) is considered, finding a feasible solution
is already NP-hard.

2In this formulation, we decide the function placement and chaining
simultaneously. This is consistent with existing works [4–8]. In reality,
physical function installation in servers may be slow; instead, one can
pre-install all possible functions in a server in advance, but dynami-
cally activate them upon service request arrivals, subject to the serv-
er’s computational capability. Physically, a function placement corre-
sponds to a function activation in this case.

Lemma 1. When link constraint (4) is considered, it is NP-
hard to find the maximal number of service chains that can
be deployed for problem A.

Proof. We will degenerate problem A into a maximal
set packing problem. To see this, assume each server has
only unit capacity, and each link is either of unit capacity
or disconnected. Then a configuration can be seen as a set
of several nodes, and two configurations that share a same
node can not be chosen together.

Therefore, this degenerated problem of A can be seen in
the class of maximal set packing problems [16], which is sure-
ly NP-complete. !

Lemma 1 shows that it is difficult to know how many
service chains can be deployed. Thus, it could be meaning-
less to consider the cost minimization problem A when the
number of deployed service chains is unknown. To ensure
the feasibility of problem A, in this section we neglect the
link capacity constraint (4), and assume the servers are ful-
ly connected. This simplification maybe valid in data center
networks where the link bandwidth is large and all server-
s are “reachable” by going through multiple physical links.
Thus, the chain deployment is only subject to the server ca-
pacity constraint. It is easy to verify that when the capacity
summation of all servers is larger than the total number of
functions to be deployed, i.e.,

∑N
i=1 ci ≥

∑K
k=1 Lk, problem

A with respect to constraints (2), (3), (5) has feasible integer
solutions. We denote this problem as problem A′.
Remark: We note that the assumption on link capacity con-
straints in this section is mainly due to the guarantee for
a feasible solution of the integer problem. This assumption
will not affect the properties of the relaxed linear problem
that we will investigate in Section IV, and will not affect the
scheme we proposed based on the desired properties.

3.1 Problem re-formulation
Before we map the integer problem to min-cost flow prob-
lems (MCFP), let us first re-formulate problem A′ to an
equivalent form, such that each server can host exactly one
function. By doing so, multiple functions deployed on a same
server can be decoupled.

Recall that the original physical network is G = (V,E),
where server i has a capacity of ci. Let us map each server
i ∈ V into a subset Vi, consisting of ci servers, each with a
unit capacity. For each link e = (i, j) (j ̸= i) with link cost
we in E, the constructed model will have links between every
server in Vi and every server in Vj , with the same link cost
we. For each self-loop link e = (i, i) with cost we in E, the
constructed model will have links among every two server in
Vi with the same link cost we. By such construction, the new
network model is denoted as G′ = (V ′, E′), where the total
number of servers is |V ′| =

∑N
i=1 ci. By so doing, the optimal

solution to the original network with arbitrary capacities can
be mapped to the optimal solution to the newly constructed
network G′ with nodes of unit capacity, and their minimum
costs are the same. Therefore, we have the following lemma.



Lemma 2. Let costI(G) and costI(G
′) denote the minimal

cost for the integer solution to place the K service chains in
G and G′, respectively. We have

costI(G) = costI(G
′). (6)

3.2 Mapping to MCFP
While ignoring the link capacity constraint and transforming
the original network into servers with unit capacity G′, the
cost minimization problem can be seen as finding K paths
with minimum cost in a network, which is still NP-hard [11].

Lemma 3. Problem A′ is NP-hard when L ≥ 3.

We now map problem A′ to min-cost flow problems. Re-
call that |V ′| is the total capacity of N servers, i.e., |V ′| =∑N

i=1 ci.

Theorem 1. Problem A′ can be mapped to at most L|V ′|

min-cost flow problems.

Proof. When an optimal solution z for G′ exists, i.e.,∑K
k=1 Lk ≤

∑N
i=1 ci, assume the solution places service chain

k (k = 1, 2, ...,K) in configuration Ck,pk = {vk1, vk2, ..., vkLk},
where vkj is a server in V ′ in which the j-th function of ser-
vice chain k is placed. Now based on G′, we construct a
directed graph Gd as follows.

First, let Ti = {vki|k = 1, 2, ...,K}, which contains the i-
th server (i = 1, 2, ..., Lk) in each Ck,pk of z. For each node in
V ′ but not in any Ti, randomly assign it to one Ti. Second,
add a node s with zero node cost, and connect s to each
node in T1 with a zero cost link. Node s can then be seen
as a virtual source. Third, for each service chain k, add a
node dk with zero node cost, which can be seen as a virtual
destination for service chain k. Connect each node in TLk

to dk with a link of zero cost. Lastly, for i = 1, ..., LK − 1,
connect each node in Ti to each node in Ti+1 with a link,
whose cost is the same as the corresponding link in E.

An example of the construction is shown in Figure 2. There
are 13 servers of unit capacity and three service chains need-
ed to be deployed. Service chain 1 has two functions, while
service chains 2 and 3 both have 3 functions. Let’s assume
the optimal integer solution exists. In the solution, the first
and second function of service chain 1 are placed in server
1 and server 5, respectively. The functions of service chain 2
are placed in servers 6, 7, 8 in order, while the functions of
service chain 3 are placed in servers 3, 2, 9 in order. Based
on this optimal solution, we construct a directed graph as
described. We put the servers hosting the first function of
each service chain into T1 (servers 1, 6, 3), put the server-
s hosting the second function of each service chain into T2

(servers 5, 7, 2), and put the servers hosting the third func-
tion of each service chain into T2 (servers 8, 9). Other servers
are randomly assigned to one of the Ti. In the constructed
graph, there is no link between any two nodes in the same
Ti, and links only exist between nearby Ti. In this sense, we
say that Ti is in layer i.

Now if the source node s wants to send a unit flow to each
dk through the directed network Gd, the problem turns into
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Figure 2: An example of constructing min-cost flow
graph.

a well-known min-cost flow problem. By solving the min-cost
flow problem3, we can obtain a solution z′. Due to the na-
ture of the min-cost flow problem and the constructed graph
Gd, z

′ must be a feasible solution to the integer problem A′,
where the servers to host the i-th functions of service chains
are chosen from Ti. Furthermore, while it cannot be guaran-
teed that z′ = z, the cost of z′ must be the same as that of z,
i.e., z′ is also an optimal solution to problem A′. Otherwise,
z will not be an optimal solution to A′.

On the other hand, as long as there is an optimal solution
z to A′, we can construct the corresponding min-cost flow
problem. Therefore, if we are able to list all the possible Gd,
the achievable deployment with the minimum cost can be
found. Note that each server of unit capacity can be at any
layer and LK = L. The total number of Gd can then be
upper bounded as L|V ′|.

Therefore, we conclude this theorem. !

Insight: Theorem 1 establishes the relationship between our
problem A′ and min-cost flow problems. In fact, when the
link capacity constraint is considered, problem A can still
be mapped to min-cost flow problems. The difference lies
in Lemma 2 when the server with multiple capacity is to
be divided into multiple servers with unit capacity. When
link capacity is considered, the link capacity also needs to
be divided into multiple unit ones and assigned to different
server pairs. Then, if a scheme can construct a small num-
ber of min-cost flow problems which are likely to have low
costs, the scheme can then achieve good performance with
low complexity. Section IV is devoted to such analysis and
schemes.

4 AN EFFICIENT ASSIGNMENT
SCHEME

In the previous section, we show that the integer problem A
with link capacity constraints or even its simplified version
A′ without link capacity constraints are both NP-hard and

3The min-cost flow problem originally only considers link costs. How-
ever, it can accommodate to consider server costs with a slightly mod-
ification in our case, i.e., for each link (i, j), we can add the link cost
with 0.5(ci + cj). Then, the server costs are mapped to the link costs.



difficult to solve. We now propose an efficient scheme for
problem A, which can achieve near-optimal performance.

The overall idea is as follows. We first relax the integer
problem A into a linear problem B (specified later) which
can be solved efficiently. From the solution of the linear prob-
lem B, we will choose some configurations which have low
costs. We then map these configurations into layers as we
have shown in the proof of Theorem 1 and run the min-cost
flow optimization to obtain the final assignment solution for
problem A.

Note that this approach is different from the conventional
greedy algorithms which choose the configurations with the
lowest cost one by one, and also different from the random
rounding approach which may violate the server’s capacity.
Our approach starts from showing some performance guar-
antees for the relaxed linear problem, based on which we are
able to determine configurations with near-optimal perfor-
mances.

4.1 Integer problem relaxation
We first relax the original integer problem (1) into a linear
fractional problem (LP) by relaxing the constraint (5) to

zk,pk ∈ [0, 1]. (7)

When relaxing the integer constraint, we need to make sure
the capacity constraints are not violated, i.e., for each con-
figuration, the number of functions deployed on a server can-
not exceed the server’s capacity, and the link capacity con-
straints are satisfied. To achieve this, we add the following
two constraints,

zk,pk = 0, if f(i, pk) > ci. (8)

zk,pk = 0, if f(e, pk) > ce. (9)

We then investigate the linear problem (1) with constraints
(2), (3), (7), (8) and (9), which we called problem B. When
zk,pk > 0 in a solution, this value is called the “utilization” of
configuration Ck,pk , which means service chain k is placed
on configuration Ck,pk with a fraction of zk,pk . Note that
while zk,pk is derived from problem B, each configuration
Ck,pk with zk,pk > 0 is a feasible deployment for problem A,
due to the introduction of (8) and (9).

While we are interested in the optimal fractional solutions,
there could exist many solutions with the same minimum
cost. For simplicity of analysis, we will only focus on the
extreme points of feasible solutions. A feasible solution is an
extreme point if it cannot be written as a convex combination
of other feasible solutions [13]. It can be easily verified that
if the linear problem has optimal solutions, there must exist
extreme points which are optimal. Therefore, without loss of
generality, when we say a solution is optimal in this paper,
the solution is also an extreme point, unless stated otherwise.

Now we study the property of the optimal fractional solu-
tion for problem B. We first assume that all services have the
same number of functions, i.e., L. This assumption will be

relaxed later. Our objective then turns into selecting K con-
figurations with the minimum cost (problem B′). We have

Obj: min
z

K∑

k=1

NL∑

pk=1

Wk,pk · zk,pk (10)

s.t.
NL∑

pk=1

zk,pk = 1, (1 ≤ k ≤ K)

NL∑

p=1

f(i, pk) · zk,pk ≤ ci (1 ≤ i ≤ N),

NL∑

p=1

f(e, pk) · zk,pk ≤ ce (e ∈ E),

0 ≤ zk,pk ≤ 1.

(11)

Note that some configurations may violate the capacity con-
straints, and the utilization on these configurations will be
set to 0 directly, i.e., zk,pk = 0, if f(i, pk) > ci or f(e, pk) >
ce.

Let z = [z1,1, ..., z1,NL , z2,1, ..., z2,NL , ..., zK,1, ..., zK,NL ]T ,
andW be the corresponding cost vector for z. We can rewrite
(10) and (11) into a matrix form:

Obj: min
z

W · z (12)

s.t. H · z ≤ b, (13)

where H is a (K +N + |E|+2NL)×KNL matrix, and b is
a (K +N + |E|+2NL)× 1 matrix. Denote aj and bj as the
j-th row of H and b, respectively. For a feasible solution z∗,
if ajz

∗ = bj (or ajz
∗ < bj), we say that the j-th inequality

is active (or inactive) at z∗.
Intuitively, the number of non-zero elements at an extreme

point will be upper bounded by the number of active in-
equalities. While the number of inequalities in problem B′

is Θ(NL), we will show below that the number of non-zero
elements is upper bounded by O(LK).

Denote the minimum link capacity as cl = mine∈E ce
(ce ≥ 1). Denote the minimum server capacity as cs =
mini=1,2,...,N ci (ci ≥ 1). As the number of service chains
is K and each service chain has L functions, the number of
servers that are fully used is at most LK

cs
. As each service

chain will at most go through (L − 1) links, the number of

links that are fully used is at most K(L−1)
cl

. If we can up-
per bound the number of active equalities in the constraints
(zk,pk ∈ [0, 1]), the number of utilized configurations in one
extreme point can also be upper bounded. We then have the
following result.

Lemma 4. If z is an optimal solution to problem B′, the
number of non-zero elements in z is upper bounded by
K + LK

cs
+ K(L−1)

cl
.

The proof of Lemma 4 is presented in the appendix. Based
on Lemma 4, we will later make use of these utilized config-
urations in our proposed scheme, instead of searching for
the exponential (e.g., L|V ′|) assignments of MCFP as we dis-
cussed in Section III. Furthermore, the fraction of service



chains deployed on some selected configurations cannot be
all trivial, e.g., the fraction will not approach zero even when
the network scales. Denote cm = min(cs, cl).

Theorem 2. For the configurations that constitute an opti-
mal solution z of problem B′, there are at least α ·K of them,
with utilization no smaller than 1−α

1+2L/cm−α , where α can be

an arbitrary value in [0, 1].

Proof. Assume the number of configurations np whose
utilization is larger than 1−α

1+2L/cm−α is smaller than αK. Ac-
cording to Lemma 4, the number of configurations whose uti-
lization is no larger than 1−α

1+2L/cm−α is at most K+ 2KL−K
cm

−
np. The total number of service chains that are deployed can
be bounded by np ·1+(K+ 2KL−K

cm
−np) · 1−α

1+2L/cm−α , which
can be verified to be smaller than K. This is contradictory
with the fact that the total number of services is K. There-
fore, we reach the conclusion. !

Remark: Lemma 4 and Theorem 2 have the following im-
portant implications. i) The number of used configurations
will decrease as the minimum capacity cm increases, while
the utilizations will increase as cm increases. ii) If capacity
violation is allowed similar to the random rounding [9, 10],
our result suggests a constant violation gap. To see this, note
that the number of functions (L) in a service chain is a con-
stant and usually small, e.g., less than 10. Hence, if we choose
α = 0.5, there are at least K/2 configurations with a con-
stant utilization, i.e., v = 1−α

1+2L/cm−α . We then choose these

K/2 configurations which have the highest utilizations to
deploy the service chains. Then the capacity violation gap
will be upper bounded by 1

v , so we can place the K service
chains with a cost of 1

v times the minimum possible cost,
if the capacity of each node and every link is expanded to
1
v times. For comparison, random rounding may introduce
an unbounded violation gap as the network scales. iii) From
a practical point of view, our simulation result suggests a
much better property than that demonstrated in the theo-
rem, e.g., more configurations are assigned with higher uti-
lizations. Therefore, we can make use of these good configu-
rations (e.g., those with high utilizations) to deploy service
chains. Further detail is presented in the next subsection.

Note that Lemma 4 and Theorem 2 assume the same num-
ber of functions. The following result considers service chains
that have different number of functions for problem B.

Corollary 1. For the configurations that constitute an op-
timal solution z in problem B, there are at least α · K of
them, with utilization no smaller than 1−α

1+2L/cm−α , where

L =
(∑K

k=1 Lk

)
/K and α can be an arbitrary value in [0, 1].

Note that L can be seen as the average number of func-
tions for the K service chains, which will be used to bound
the number of inequalities for capacity constraints. Since the
proof is similar to that of Theorem 2, it is omitted here.

According to Corollary 1, if the server capacity is allowed
to be violated, the violation gap is also upper bounded by a
constant.

4.2 Mapping fractional solution into
integer solution

In the previous subsection, we show the desired properties
of the linear problem for function chain placement. In this
subsection, we make use of the good configurations indicated
by the fractional solution to obtain the integer solution for
the general chaining placement problem A.

The good configurations are selected and mapped to layers
in steps 2-12, as shown in Algorithm I. We first solve a lin-
ear problem (step 3), and then choose the maximal indepen-
dent configuration set in steps 5-11 (each configuration cor-
responds to a function placement for a service chain). With
higher priority, we choose the configuration for service chains
with a larger number of function (step 5). The selected con-
figuration is mapped to layers in step 8. Then, the scheme
will update the link capacity and server capacity (step 9),
i.e., reduce the server capacity and link capacity used by
previous selected configurations, and choose configurations
for other service chains (back to step 5). When the maximal
independent configuration set is found and there are unse-
lected service chains, the scheme (back to step 2) will then
try to place the remaining service chains with the remain-
ing server capacity and link capacity through another linear
problem and again choose a maximal independent configu-
ration set. This process will stop until K configurations are
selected or there is no more configuration can be selected.

After the mapping to layers, each node in the layers rep-
resents a server with unit capacity, as that in Lemma 2. In
step 13, we assign link capacities for nodes that have been
assigned to the layers. For each link between nearby layers,
the link capacity is assigned with 1 if the corresponding link
capacity in the original graph is a positive integer. Otherwise,
the link capacity is assigned with 0. In step 14, if there are
more server capacity and link capacity available, we assign
unit capacity of each server as a node to one layer random-
ly and assign link capacity if available. Finally, we run the
min-cost flow optimization to obtain the integer solution.

Note that our main idea is to use linear optimizations as
a basis to select maximal independent configurations for ser-
vice chains. After that, we use the min-cost flow problem to
further optimize the placement. Our approach is novel and
can be adapted to more sophisticated optimizations. For ex-
ample, one can place K1 ≥ K service chains instead of K at
the first step. By enlarging the number of service chains to
be placed, one can provide more flexibility in configurations
and balance the impact of selected configurations and uns-
elected ones. In this paper, we will only adopt Algorithm I,
since it has already achieved superior performance, as shown
in Section V.

4.3 Computation complexity
Here, we show the complexity for Algorithm I.

Lemma 5. The complexity for Algorithm I is polynomial.

Proof. For Algorithm I, there are two optimizations need-
ed to be solved, i.e., the min-cost flow optimization and the



Algorithm 1 Function Chain Placement Scheme

1: Initialization: I is a vector with K zero elements, the
server set in the l-th layer Tl = ∅ (1 ≤ l ≤ LK)
2: While min(I) = 0 (some service chains are unselected)
3: Solve the linear problem B with the current serv-
er capacity and link capacity to place unselected services.
Denote the optimal solution as S = {Ck,pk |zk,pk > 0}
4: if S = ∅, break, go to step 13
5: for k = K,K − 1, ..., 1
6: if I(k) = 0
7: select the highest non-zero utilized configuration
Ck,pk ∈ S. If not found, k = k − 1, go to step 5
8: I(k) = 1. Put the l-th server of Ck,pk , i.e., vl, in
the set Tl = {Tl ∪ vl}, for 1 ≤ l ≤ Lk

9: update the server capacity and link capacity, re-
move the infeasible configurations from S
10: end
11: end
12: end
13: Assign link capacities for links between nearby layers
14: if there are more server capacity and link capacity
available, assign the servers to the layers randomly
15: Run a min-cost flow optimization, and record its cost

linear problem optimization. The complexity of the min-cost
flow is O(K|V ′|2) [14]. We now focus on the complexity of
the linear optimization. For theoretical interest, one can use
the well known Ellipsoid algorithm, which is of polynomial
complexity. For practical interest, the work [15] gives an ap-
proximation algorithm for linear problems, where the entries
of the constraint matrix are non-negative. Assume the num-
ber of non-zero entries in the constraint matrix is n, which is
O(KNL) in our case. The algorithm in [15] can run in time
O(n log(n)/ε2) to achieve a performance with a gap of 1+ ε
from the optimality. Therefore, if we assume the parameter
ε as a small constant, the complexity for the linear problem
is O(KNL log(KNL)).

The times to run linear optimization is upper bounded by
K and we only run MCFP once. Therefore, the overall com-
plexity of Algorithm I is O

(
K ·KNL log(KNL) +K|V ′|2

)
.

Since L is a constant, we conclude Lemma 5. !

5 PERFORMANCE EVALUATION
In this section, we conduct simulations to verify our obser-
vations on the properties of the linear problem and the per-
formance of our scheme. We compare our scheme with the
greedy scheme, the random rounding scheme and the Kariz
scheme proposed in [12].

5.1 Case Study
We start by using an example to illustrate how various schemes
work to determine the function placement and chaining. In
Fig. 3(a), we consider a network composed of five servers.
Each server can host up to two functions. When the unit
cost on server capacity is assumed to be identical for all

servers, Kariz [12] uses a layer-to-layer otpimization. Thus,
we assume server costs are also identical. The link cost and
capacity between any two servers is labeled on the links be-
tween them, i.e., (link cost, link capacity). If two functions
are placed in the same server, the link cost is assumed to
be zero4. In our example, we have two service chains, i.e.,
service chain 1 requiring three functions and service chain 2
requiring four functions to be placed and chained.
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Figure 3: Network topology and the optimal fraction-
al solution.

Achieving fractional solutions. Let us first show how to
obtain a fractional solution to the problem. According to
Lemma 2, each server i with two units of capacity can be
mapped to two servers with unit capacity, denoted as iA and
iB, respectively. The optimal fractional solution is conduct-
ed on this newly constructed graph G′, presented in Fig. 3(b).
From the figure, we can see that service chain 2 is placed in
configurations (4A, 4B, 1A, 1B) and (5A, 5B, 1A, 1B)5, each
with a fraction of 1/2. This means the first function in service
chain 2 is “divided” into equal two halves, each of which are
placed in server 4A and server 5A, respectively. We can also
verify that by summing up these partially placed functions,
each server hosts up to two functions in total, which satisfies
the server capacity constraint. For example, server 1A is used
in configurations (4A, 4B, 1A, 1B) and (5A, 5B, 1A, 1B), each
with a fraction of 1/2. Thus, the sum of the fractions that
server 1A holds is one. However, in reality, such fractional so-
lution or this “division” on a function is not implementable.
We will next show how we achieve integer solutions based on
these fractional results.
Workflow and result of our proposal. Our scheme map-
s this fractional solution to a min-cost flow problem. We
first identify the maximum independent configuration set.
As stated in Section IV, the configuration with the high-
est utilization (in this example, (4A, 4B, 1A, 1B)) is chosen
first. Since all other utilized configurations share at least
one node with configuration (4A, 4B, 1A, 1B), they cannot
be chosen, and the maximum independent configuration set
remains a singleton. We then try to place the second service
chain with the remaining server capacity and link capaci-
ty with a linear programming, from which we will obtain

4The cost of self-loop communication can be set as an arbitrary value.
5The four functions of service chain 2 are deployed in order in the
four servers of the configuration.



configuration (3A, 5A, 5B). We now map the configuration
(4A, 4B, 1A, 1B) and configuration (3A, 5A, 5B) into layers,
i.e., server 4A and server 3A into the first layer and server 4B
into the second layer, etc. Other three servers are mapped
randomly to the layers, as illustrated in Fig. 4. Note that the
link capacity is also divided. For example, there is only one
unit link capacity between server 3 and server 5. Therefore,
in the mapped MCFP, the link capacity is assigned to link
(3A, 5A) and then can not be used by link (5A, 3B). Now
we treat it as a min-cost flow problem and obtain our result,
which is shown in the second column of Fig. 5. Note that the
cost of configuration (4A, 4B, 1A, 1B) is the summation of
link cost (4A, 4B), link cost (4B, 1A) and link cost (1A, 1B),
which is 0+242+0 = 242. Therefore, in our scheme, the con-
figurations selected before MCFP is also 95.5+533.7 = 629.2.
The cost savings by MCFP is then 629.2− 463.7 = 165.5.
Workflow and result of Kariz. Kariz will first find the
minimal cost matching for the first function and second func-
tion of two service chains, which can be (1A, 1B) and (3A, 3B).
Then Kariz will find the minimal cost matching for the sec-
ond function (now deployed in 1B and 3B) and third func-
tion (can be deployed in the remaining servers) of two service
chains, which turns out to be (1B, 4A) and (3B, 5A). Finally,
Kariz finds the minimal cost link for the third function and
the last function of service chain 2, which is (5A, 5B).
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Figure 4: Mapping to a min-cost flow problem, where
real lines represent that the links are valid.
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Figure 5: Solutions for different schemes.

Workflow and result of the greedy algorithm. For com-
parison, the greedy scheme will choose the configuration with
the minimal cost for service chain 2 (with more functions)
first, i.e., (4A, 4B, 1A, 1B) in this case, and then the one
with the minimal cost from the remaining servers for service
chain 1, i.e., (3A, 5A, 5B) in this case.
Workflow and result of the random rounding algo-
rithm. For random rounding, it will randomly select

(4A, 4B, 1A, 1B) or (5A, 5B, 1A, 1B) for service chian 2, and
randomly select one of the four configurations for service
chain 1. If the random rounding scheme chooses configura-
tions (4A, 4B, 1A, 1B) and (4A, 5A, 5B), it can achieve a cost
of 269.4 even lower than the optimal solution. Unfortunately,
the server capacity of server 4 is violated, and this shows the
deficiency of using random rounding algorithms.
Time complexity. We see that there is a difference in the
results given by our scheme and the optimal one. We em-
phasize by a small increment of total cost, our algorithm
significantly reduces the computational complexity. Recall
that in Section III, the optimal integer solution is shown
to be NP-hard. As the optimal integer solution may only
be applicable for small networks, our proposed scheme aims
to significantly reduce the complexity by choosing some “fa-
vorable” min-cost flow instances instead of all instances. To
ensure a desired performance, the properties shown in the
relaxed linear problem is of critical importance.

5.2 Properties of the linear problem
Now we verify the desired properties for the optimal linear
solution obtained in Section 4.1, i.e., the number and uti-
lization of selected configurations can be upper and lower
bounded, respectively. We set the simulations without link
constraints. The simulation with link constraints is similar.
We have N servers, each with one unit capacity. We have K
service chains to be implemented, each requiring L functions.
The link cost between any two servers is randomly generated
from a uniform distribution over [0, 1000].

We run 1000 simulation instances when N = 26, L =
3,K = 8 and plot the cumulative distribution of the number
of such simulation instances with respect to the performance
measures. Figure 6 shows CDF of instances w.r.t. the number
of configurations utilized in the optimal fractional solution.
We see that over 74% of the instances are with 8 config-
urations, where the fractional solution is equivalent to the
integer solution. The maximal value is 19, which is tighter
than the theoretical bound (Lemma 4) 2LK (or 48 here).

Recall that in Theorem 2, we show that at least K
2 con-

figurations are with utilizations greater than 1
4L+1 (or 1/13

in this case). Figure 7 shows the CDF of instances w.r.t
the minimum utilization of all positive configurations. The
lowest value is 0.125, which verifies our theoretic result. In
Fig. 8, we show the number of instances w.r.t. the maximal
number of disjoint configurations chosen from the fraction-
al solution, where the minimal value is 6. Therefore, if we
just adopt these disjoint configurations for the service chain
placement, at most two service chains will be rejected. To
summarize, Figs. 6-8 verify our theoretic results and show
tighter bounds than we proved.

5.3 Comparison of placement schemes
Since link capacity constrains may lead to infeasible solution-
s, we first compare the performance of our scheme with the
greedy scheme and Kariz, without capacity constraint. We
run 1,000 instances under N = 26,K = 8, L = 3. Figure 9
shows the comparison of weighted costs, which refers to the
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actual cost of the corresponding scheme divided by the mini-
mum cost of the integer solution (exhaustive searching). The
x-axis is the weighted cost and the y-axis is the CDF of num-
ber of simulation instances. The weighted cost of the greedy
scheme is 1.49 on average, and that of Kariz is 1.83, while
that of our proposed scheme is 1.05, which is 44% and 78%
lower than greedy scheme and Kariz, respectively. We also
note that, when we allow the greedy scheme to choose two
best configurations at each time, such as that proposed in [7],
it has insignificant performance variation. Figure 10 shows
the performance for the random rounding scheme, whose av-
erage weighted cost is close to 1. Over 1,000 instances, there
are 76% of them whose optimal linear solutions are already
optimal integer solutions. For the other 24% simulation in-
stances, 15.3% of them can satisfy the capacity constraints,
82.5% of them have capacity violation of 2, and 2.2% of them
have capacity violation up to 3. For comparison, while our
scheme has a slight more cost (less than 5%), it satisfies the
capacity constraint. These simulation results show the supe-
rior performance of our proposed scheme over state-of-art
approaches.
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Figure 9: Comparison of our scheme and other
schemes.

Remark: We note that the superior performance of our
scheme comes from two aspects. First, we select maximal
independent configurations from a linear problem, which will
not saturate the low cost links. In comparison, greedy schemes
and Kariz may select a number of good links and leave small
room for other configurations or functions to select. Second,
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Figure 10: The performance of random rounding
scheme.
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Figure 11: Performance comparison when services
have distinct numbers of functions and there are link
constraints.

by mapping to MCFP, we can further improve the perfor-
mance, while preserving the integer solution, as shown in
our previous example.

Next, we simulate the scenario when the link capacity is
taken into account, as presented in Fig. 11. In this exam-
ple, we have 9 servers, each with two units of capacity. The
link capacity between two servers are randomly chosen from
[0, 1, 2]. Self-loop link capacity is assumed to be zero. There
are four service chains in total, one of them having two func-
tions, two of them having three functions each, and the last
one having four functions. The greedy scheme first places
the service chains with the larger number of functions. Un-
der this setting, our scheme and the greedy scheme always



have feasible solutions during the 1,000 simulation instances.
We can see that the cost of our proposed scheme is only 1%
higher than that of optimal integer solution, which is much
better than the greedy scheme.

6 CONCLUSION
In this paper, we study the the optimal placement chaining
problem for virtual network functions. We set up an opti-
mization model for this integer problem and show underlying
properties for its relaxed fractional problem. Based on the
properties, we devise an efficient scheme to select low-cost
configurations from the fractional solution and determine the
mapped min-cost flow problem to obtain the network func-
tion placement and chaining solution. Our scheme achieves
near-optimal performance and outperforms existing state-of-
art approaches.
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A PROOF OF LEMMA 4
Assume z is an optimal solution to problem B′. Define I1 =
{zk,pk |zk,pk = 1, zk,pk ∈ z}, which is the set of configurations
whose utilizations are equal to 1. For each configuration in
I1, each server and each link in that configuration will be
used with one unit capacity. Then we can subtract the used
server capacity and link capacity from the original server
graph G and obtain a new graph G1.

Define I2 = {zk,pk |zk,pk > 0, zk,pk ∈ z}, which is the
subset of non-zero elements in z. We have I1 ⊂ I2. By sub-
tracting I1 from I2, I2\I1 must be an optimal solution for
G1. Otherwise, (I2\I1)∪ I1 is not an optimal solution for G.

Let z′ = I2\I1. From the original constraints Hz ≤ b, we
construct a new matrix H ′ such that H ′z′ ≤ b′. For each
zk,pk ∈ z, if zk,pk is not in z′, we remove the corresponding
((k − 1)NL + pk)-th column in H. We do this for each each
zk,pk ∈ z, and the matrix H is transformed to H ′. By remov-
ing the satisfied service chains in I1 and the corresponding
used capacities fromG, the constraint vector b is transformed
to b′ in G1. Then, we have H ′z′ ≤ b′.

Now we count the number of active inequalities in H ′z′ ≤
b′. Note that all zk,pk ∈ z′ is strictly larger than 0 and smaller
than 1. Therefore, the active inequalities in H ′z′ ≤ b′ can on-

ly appear in the first K− |I1| constraints, i.e.,
∑NL

pk=1 zk,pk =

1(k : ∃zk,pk ∈ z′), and in the constraints for the server ca-
pacities and link capacities. As the number of service chains
deployed in z′ is equal to K − |I1|, the total server capacity
needed is no larger than L(K− |I1|). Note that the server ca-
pacity needed in I1 is L|I1|. Therefore, the number of active
inequalities in the server capacity constraints of H ′z′ ≤ b′

is upper bounded by L(K−|I1|)+L|I1|
cs

. The total link capac-

ity needed for z′ is no larger than (L − 1)(K − |I1|), i.e.,

there are at most (L−1)(K−|I1|)+(L−1)|I1|
cl

active inequalities
in the link capacity constraints. Therefore, the total num-
ber of active inequalities in H ′z′ ≤ b′ is no larger than
K−|I1|+ LK

cs
+ (L−1)K

cl
. By removing the inactive inequalities

in H ′z′ ≤ b′, H ′ is transformed to H ′′, and b′ is transformed
to b′′, such that H ′′z′ = b′′. To let z′ be an extreme point,
H ′′ must have a zero nullspace. Otherwise, assume there ex-
ists a x satisfying H ′′x = 0. As every element in z′ is strictly
positive and smaller than 1, we can choose an arbitrarily s-
mall constant ε such that every element of z′ + ε ·x and also
z′ − ε · x lies in [0,1]. Therefore, z′ is a convex combination
of the other two feasible and optimal solutions z′ + ε · x and
z′ − ε · x, leading to a contradictory.

Since H ′′ has a zero nullspace and the number of rows in
H ′′ is not larger than K − |I1|+ LK

cs
+ (L−1)K

cl
, the number

of columns of H ′′ is no larger than K − |I1|+ LK
cs

+ (L−1)K
cl

.

Hence, the number of variables in z′ can also be upper bound-
ed, and the number of non-zero elements in the optimal so-
lution z can be upper bounded by

K − |I1|+
LK
cs

+
(L− 1)K

cl
+ |I1|. (14)

Thus, we conclude Lemma 4.


